Code: CE2T3, CS2T3, IT2T3

I B. Tech-II Semester-Regular / Supplementary Examinations - April 2019

ENGINEERING PHYSICS (Common for CE, CSE & IT)

Duration: 3 hours

Max. Marks: 70

PART – A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Explain Heisenberg's uncertainty principle.
 - b) Mention the important postulates of Planck's quantum theory.
 - c) Distinguish between crystalline and amorphous substances.
 - d) Show that in a cubic lattice $d_{100} : d_{110} : d_{111} = 1 : \frac{1}{\sqrt{2}} : \frac{1}{\sqrt{2}}$.
 - e) Explain variation of Fermi distribution function with temperature.
 - f) Define dielectric constant.
 - g) What is Bohr magnetron? Explain.
 - h) Write Einstein relations.
 - i) Distinguish between spontaneous and stimulated emissions.
 - j) Discuss basic principle behind optical fibers.
 - k) Why nano-materials exhibit different properties?

PART – B

Answer any THREE questions. All questions carry equal mark	S.
$3 \ge 16 = 48 M$	
2. a) Discuss any experiment which confirms the de Broglie'	S
concept of matter waves.	6 M
b) Show that the energy associated with particle moving i	n
a potential box is quantized by applying Schrodinger	
wave equation.	8 M
	2 14
c) Discuss the physical significance of wave function.	2 M
3. a) What are miller indices? How are they obtained?	
Mention the important features of Miller indices.	6 M
I	
b) Explain how crystal structure can be determined by	
using powder X-Ray diffraction technique.	8 M
c) The line A of X-ray beam gives a first order reflection	
maximum at a glancing angle of 30° to the smooth face	
of a crystal line B of $\lambda = 0.97 \text{A}^0$ gives a third order	
reflection minimum at an angle of 60° from the some	
face of the same crystal. Find the wavelength of line "A	2 M

- 4. a) Discuss the postulates of free electron theory of metals. Mention the success and drawbacks of classical theory.
 - b) Derive the expression for local field or internal field for a cubic system. 8 M

6 M

- c) A solid dielectric medium of cubic symmetry has 5×10^{28} atoms / m³. If the polarizability is 36×10^{-40} m³, calculate the dielectric constant. 2 M
- 5. a) What are drift and diffusion currents densities and derive the expressions for them. 6 M
 - b) Distinguish between dia, para, ferro and antiferro magnetic substances.
 8 M
 - c) The following data is given for Ge at 300K. $n_i=2.4x10^{19}/m^3$, $\mu_e=0.39 m^2/v/sec$, $\mu_p=0.19 m^2/v/sec$. Calculate the conductivity of the sample. 2 M
- 6. a) Discuss the construction and working He-Ne laser. 8 M
 - b) Discuss the synthesis of nano materials using Sol-Gel and Ball milling methods.
 6 M
 - c) Discuss attenuation in optical fibers. 2 M